摘要
异常检测旨在检测出观测数据中的非正常值,被广泛应用于反信用卡欺诈、网络入侵检测、医疗分析以及气象预报等领域。在异常检测中,正常数据通常具有异常数据所不具备的某种内蕴结构。因此,如何有效地利用正常数据与异常数据在数据结构上的差异性将有助于提高异常检测性能。为此,本文提出了一种新颖的基于标签传递的异常检测算法。该算法通过图模型刻画正常数据所具有的内蕴结构,并通过多重标签传递来构建未标记正例样本与待测试样本的标签置信度的差异。最后,基于正例样本的标签置信度的统计特性分析,实现对测试样本的异常性判决。在人工合成及真实数据集上的实验验证了本文算法的有效性。
- 单位