摘要

本文中针对现有检测方法中不能有效区分行人和骑车人两类目标的问题,提出了一种基于深度神经网络的行人和骑车人联合检测方法;而针对道路环境中的行人与骑车人联合检测误检漏检频繁、小尺寸目标检测效果不佳和背景环境复杂多变等问题,设计了难例提取、多层特征融合和多目标候选区域输入等多种深度神经网络改进方案,以实现行人与骑车人的联合检测。在公开的行人与骑车人数据库上进行的试验表明,所提出的方法对行人或骑车人的识别率高,且能有效区分彼此,其有效性得到了验证。

  • 单位
    汽车安全与节能国家重点实验室; 清华大学

全文