摘要
在大型水利建造工程现场,存在高空坠物、塔吊转动、墙体坍塌等问题,对于建造人员人身安全造成巨大威胁,佩戴安全帽是保护建造人员的有效措施,作为工程作业中的安全管理,对建造人员进行安全帽佩戴的精确检测很有必要。针对现有安全帽检测算法在大型水利建造场景下对小且密集的安全帽目标存在漏检、检测精度较低等问题,提出一种基于STA-YOLOv5的安全帽佩戴检测算法,该算法将Swin Transformer和注意力机制引入到YOLOv5算法中,提高模型对安全帽的识别能力。实验结果表明,STA-YOLOv5算法具有更精确检测结果,识别准确率达到91.6%,较原有的YOLOv5算法有明显提升。
-
单位中国建筑科学研究院有限公司; 自动化学院; 重庆大学