基于多维信息特征分析的驾驶人认知负荷研究

作者:郑玲; 乔旭强; 倪涛; 杨威; 李以农
来源:中国公路学报, 2021, 34(04): 240-250.
DOI:10.19721/j.cnki.1001-7372.2021.04.021

摘要

准确评估驾驶人认知负荷水平,对于深入研究驾驶人行为特性,改善驾驶安全性具有重要意义。现有的驾驶人认知负荷分类方法,大多基于心电、脑电等生理信息和车辆信息,由于特征选择上的单一性,导致驾驶人认知负荷分类模型的分类精度不高。设计基于跟驰场景的不同认知负荷N-back次任务试验,通过采集受试者的生理信号和车辆信号,结合NASATLX主观评分和机器学习算法,提出了基于多维信息特征融合的驾驶人认知负荷分类方法。研究表明:基于生理信息和车辆信息的多维信息特征认知负荷分类方法,其精度显著高于传统的基于生理信息的认知负荷分类方法,以多维信息特征为输入,随机森林法以其稳定性好、抗过拟合能力强的特点,表现出优异的分类效果,相比神经网络和支持向量机,具有最高的平均分类精度。

全文