摘要

为辨别农作物所受重金属胁迫种类,以受重金属铜(Cu)、铅(Pb)胁迫的玉米叶片为研究对象,利用ASD地物光谱仪获得叶片高光谱数据,通过分数阶微分(FD)对原始光谱数据进行处理,采用竞争性自适应重加权采样法(CARS)提取特征波段,最后通过多层感知机(MLP)、K-最近邻(KNN)、支持向量机(SVM) 3种模型对受胁迫的叶片光谱进行辨别,选择最优的MLP构建的FD-CARS-MLP模型,进行玉米生长铜铅污染信息光谱辨别。结果表明,FD-CARS-MLP模型对于受胁迫叶片光谱辨别的能力相较于传统方式有所提高,试验集辨别精度均可达到98%以上,0.1、0.2阶分数阶微分辨别精度可达到99%以上。选取苗期与抽穗期的玉米叶片,对其进行FD-CARS-MLP模型的可行性测试,经验证可得,FD-CARS-MLP模型辨别受重金属胁迫玉米叶片光谱数据的精度更高且更稳定,可为监测谷类作物不同重金属胁迫提供技术与方法。