基于GCN的复杂网络关键节点识别研究

作者:杨洋; 王俊峰*
来源:四川大学学报(自然科学版), 2023, 60(03): 55-64.
DOI:10.19907/j.0490-6756.2023.032002

摘要

准确识别出网络中的关键节点是复杂网络研究的重要内容之一.现存的关键节点识别方法多数是基于网络结构提出的中心性度量方法,识别准确率低且适用范围具有局限性.因此本文提出了基于图卷积网络的关键节点识别方法,不仅考虑了节点属性,还考虑了网络结构和邻居节点结构.首先,根据网络图例数据提取多维度特征并构建特征向量;其次,将节点特征向量输入到GCN层学习;最后,通过回归损失函数计算出最小损失,识别出关键节点.本文选取传播动力学中的SIR模拟实验和牵制控制实验作为评价方式,在不同类型的真实网络上进行验证.结果表明本文提出的方法在适用范围和准确率方面较其他方法更具优势.

全文