摘要
为解决架空输电线路运行过程中因设备及杆塔上鸟巢对输电线路造成的不良影响,本文通过对比分析一阶目标检测模型和二阶目标检测模型的优劣,选取以分类损失函数为核心、特征金字塔网络为骨干网络的RetinaNet模型用于鸟巢目标的自动检测。解决了经典的一阶目标检测模型和二阶目标检测模型对鸟巢的检测效率或准确率比较低的问题。本文实验首先通过数据集选取及数据集预处理,并经过模型训练逐步优化调整网络结构和参数,建立了适合鸟巢检测的RetinaNet模型,实现对鸟巢的快速准确检测。实验结果表明,RetinaNet模型对输电线路的鸟巢的的平均准确率为94.1%,每张图片的识别速度为68ms,通过与Faster R-CNN、YOLO及SSD方法进行比较,验证了RetinaNet模型对输电线路设备及杆塔上鸟巢检测的有效性和可靠性。
-
单位贵州电网有限责任公司输电运行检修分公司