摘要

为了解决传统主元分析(PCA)故障监测方法中主元选择不合理问题,提出一种基于故障敏感主元的多块PCA故障监测方法。该方法基于正常工况数据集进行PCA分解,得到投影方向与特征值;定义一种故障敏感程度系数作为新的主元排序准则,以选择出每个变量方向上故障监测最敏感的主元;并建立相应的子模型,计算其监测统计量,利用贝叶斯信息准则(BIC)对监测结果进行融合。通过对田纳西伊斯曼(TE)过程和高炉炼铁过程中的应用仿真,结果表明所提方法有效地选取了主元,并且提升了故障监测模型的精度。