摘要

高光谱数据具有光谱分辨率高、波段连续性强、信息丰富等特点,在土壤信息的监测中得到广泛应用。利用高光谱遥感技术测定盐渍化土壤属性对灌区农作物的生长和农业可持续发展具有重要意义。采集玛纳斯河流域221个土壤样品,分别测定土壤电导率(EC)、有机质(SOM)和Na+,Ca2+,Mg2+三种离子浓度含量等土壤理化性质和光谱反射率曲线,并由三种离子含量得出钠吸附比值(SAR),采用逐步线性回归方法建立EC,SOM和SAR与原始光谱反射率(R)、标准正态变量(SNV)、归一化差异植被指数(NDVI)、倒数的对数(LR)、一阶微分(FDR)和去包络线(CR)等六种指标的模型。模型验证结果表明,相较其他五种变量的模型,以R为自变量的EC对数模型精度最高,相关系数为0.782,均方根误差为0.256。以NDVI为自变量的土SOM预测模型精度最高,相关系数为0.670,均方根误差为5.352。以FDR为自变量的SAR预测模型精度最高,相关系数为0.647,均方根误差为1.932。EC预测模型效果最好,SOM预测模型次之,SAR预测模型精度最低。最优模型中EC,SOM和SAR的敏感波长分别分布于3951 801,3521 144和3941 011nm波段。由于土壤中各属性的差异和不同成分空间分布的变异性,对于不同土壤性质的建模和验证结果差异较大。本研究可为盐渍化土壤的高光谱遥感监测提供依据。