摘要

采用高阶Runge-Kutta不连续Galerkin方法对欧拉方程进行数值研究。针对高分辨率数值流通量格式中斜率限制器展开研究,采用虚拟流体法这种界面处理方法和斜率限制器共同抑制数值振荡。结果表明:斜率限制器计算稳定,计算精度高,能实现计算的高精度和高分辨率;在数值计算方法采用不连续Runge-Kutta Galerkin方法,界面处理方法采用虚拟流体法的计算环境下,斜率限制器十分高效和精确,在工程应用中有广阔的前景。