摘要

为缓解协同过滤推荐算法中评分数据稀疏问题对推荐结果的影响,提出一种融合文本评论和用户评分交互的推荐算法。通过将用户和商品评论各自潜在主题向量与用户、商品的潜在因子向量进行融合并各自进行评分,经过动态线性加权融合做出整体评分预测。在公开的多组数据集上,以推荐结果的均方根误差(RMSE)和平均绝对误差(MAE)为评估指标进行实验验证。实验结果表明,提出算法可以更好地刻画用户偏好和商品特征,有效缓解了评论数据稀疏性影响,提高推荐结果的准确性。

全文