摘要
神经机器翻译技术是目前机器翻译应用中取得效果最好的方法。将外部语言学知识如单词词性、依存句法标签引入神经机器翻译系统以提高翻译性能已经被很多学者证明是一种行之有效的途径。相较于其他表音文字,汉字是一种形声字,其构造方法具有一半表音、一半表意的特殊结构,这种特殊的构造法使得汉字含有丰富的语义、语音和句法信息。该文在Marta R等工作的基础上,提出了一种新的将字形特征融入端到端模型的方法,并将之应用于中文到英文的翻译上。与基准系统相比,该方法在NIST评测集上获得平均1.1个点的显著提升,有效地证明了汉字字形特征可以对神经机器翻译模型起到促进作用。
- 单位