摘要
提出一种基于LSTM-Attention网络的短期风电功率预测方法。首先,使用LSTM网络对数值天气预测(NWP)数据的特征信息进行提取,同时采用注意力机制有效分析了模型输入与输出的相关性,从而获取了更多重要时间的整体特征;其次,使用卷积神经网络(CNN)提取NWP数据的局部特征,并引入压缩和奖惩网络(SE)模块学习特征权重,利用特征重新标定方式提高网络表示能力;最后,将局部特征和整体特征进行特征融合,通过分类器输出分类结果。利用NOAA提供的美国加利福尼亚州某风电场的数据进行案例分析,证明了所提方法的有效性。试验结果表明,与BP神经网络、自回归积分滑动平均模型(ARIMA)模型和LSTM模型相比,LSTM-Attention模型具有更高的预测精度,证明了该方法的有效性。
- 单位