摘要
构造群例是群论研究的重要方面,本文研究了两个具体群例的剩余有限性.设p是任意素数,C=<c>是无限循环群,R=ZC是C上的整群环,U(n,R)是R上的单位上三角矩阵群,其中n≥2,它是幂零类为n-1的无限秩的幂零群.本文首先证明了U(n,R)是剩余有限p-群.其次,记G=<α>(?)U(3,R),其中α=diag(c,1,c)是3阶对角矩阵.本文给出了G的结构,G是3元生成的导长为3的可解群,特别地证明了G是剩余有限p-群.进一步地,本文构造了G的两个商群,它们均不是剩余有限的,这两个商群似乎比Hall发现的经典群例要初等具体.
- 单位