摘要
传统集成信息增量学习算法无法更新数字化集成信息分类器,导致信息增量学习结果误差较大、效率偏低。为解决上述问题,提出基于深度学习的数字化集成信息增量学习算法。采用先验和条件两种概率获取后验概率后,获取样本类别标签。基于随机属性选择形成加权朴素贝叶斯分类器,分类数字化集成信息。并依据数据子集表更新该分类器。利用遗传算法获取更新后加权朴素贝叶斯分类器的最佳结果,完成数字化集成信息增量学习。实验测试结果表明,所提算法可有效控制训练样本数量,提升的信息增量学习效率,且该算法可较好地适应不同大小数据集。
- 单位