摘要
语义挖掘工具可从批量非结构化人工自然语言文本数据中准确提取有用信息,但是由于网络环境文本具备半结构化、多尺度、海量、复杂关联等属性,导致文本数据通常维度较高,且仅有小部分节点存在明确标签,因此语义挖掘难度较大。提出基于图神经网络的人工自然语言语义挖掘方法。结合多头注意力机制和半监督图卷积神经网络对人工自然语言文本降维处理。联合改进的模糊C均值聚类算法和免疫单亲遗传算法,构建人工自然语言语义挖掘算法。实验结果表明,研究方法的聚类纯度、准确率和召回率均高于95%,说明上述方法的应用性能较优。
- 单位