摘要
针对以往集值映射Nash均衡点无约束的问题,提出了有约束条件下的广义集值映射Nash均衡点的概念,它以通常的Nash均衡点及Loose Nash均衡点为特例,首先,使用KKM定理的等价形式,得到了广义集值映射Nash均衡点的存在定理;其次,针对广义集值映射Nash均衡点的稳定性,通过定义Levitin-Polyak近似解序列,证明了Levitin-Polyak良定性的充分和必要条件,在此基础上,得到了广义集值映射Nash均衡点的Levitin-Polyak良定性结果;此外,通过给出实际例子,验证了广义集值映射Nash均衡点的存在性和Levitin-Polyak良定性结果,说明了大多数的广义集值映射Nash均衡点具有稳定的性质,同样,当其支付或可行约束对应映射退化为单值函数时,其存在结果和Levitin-Polyak良定性结果依然成立。
- 单位