摘要
输电线路覆冰是最常见影响电网系统安全稳定运行的自然灾害。针对输电线路覆冰情况具有非线性增长、影响因素复杂等特点,提出了基于惯性传感器协同1D CNN的输电线路覆冰情况识别方法。该方法基于一维卷积神经网络,网络可自动从原始数据中进行特征提取和分类。采用集中质量法进行了输电线路覆冰的模拟实验,搭建了基于惯性传感器的输电线路模拟覆冰的三轴加速度的数据采集平台,构建了由未覆冰、轻度覆冰以及重度覆冰等三种线路覆冰情况的21 824个样本组成的数据集。实验结果表明,基于惯性传感器协同1D CNN的线路覆冰情况识别的方法性能优秀,平均准确率可达到91%。
- 单位