摘要
由于极大频繁子树中已经隐含了所有频繁子树信息,尤其处理大型图数据集时候,挖掘极大频繁子树对提高频繁子树挖掘算法效率具有重要意义.首先在有效编码的基础上提出连接和扩展操作算法,通过两个算法产生所有极大候选子树;其次引入嵌入集计算解决子树同构问题,对子树同构问题进行了优化,进一步提出了一种新的极大频繁子树挖掘算法(MFST);最后证明了算法的正确性和分析了算法在最坏情况下的时间性能,并与其它基于半结构化数据集的频繁子树挖掘算法进行了比较.实验结果表明,MFST算法具有更好的时间性能和空间性能,可以在图数据集中有效挖掘频繁子树.
- 单位