为提高负荷预测的精确度,本文提出了一种基于改进磷虾群算法优化ESN神经网络的负荷预测模型。首先采用核主成分分析法对河南某地区的实际电力负荷数据进行优选,再使用IKH-ESN模型对优选后的数据进行预测。同时建立传统BP、传统ESN、PSO-BP三种模型进行预测并对比分析。仿真结果证明本文所提出模型有效地克服了传统模型易陷入局部最小等问题,对于负荷预测更具有准确性与有效性。