摘要
深度学习算法应用于SAR图像分类领域时存在模型训练时间较长且精度不够高等问题。对此,提出一种基于混合注意力机制的卷积神经网络模型,该模型基本模块分为主干分支和软分支。主干分支由残差收缩网络和改良之后的通道注意力机制组成,负责提取主要特征;软分支将下采样和上采样相结合,负责提取混合注意力权重,增强从输入到输出的映射能力。该模型在MSTAR数据集上取得了99.6%的识别率,且训练时间较短。噪声分析显示:该模型对椒盐噪声具有较强的鲁棒性。
-
单位空军工程大学