摘要

针对带有输入时滞和外部干扰的集群无人机系统,提出了一种基于强化学习的集群无人机事件触发分布式自适应最优控制方法。为了实现最优控制,引入了基于神经网络的强化学习算法,并设计了一种与系统控制性能有关的动态事件触发策略,该策略可以在尽可能降低对一致性控制性能不利影响的前提下,减少通信资源的浪费,同时该策略不存在Zeno行为。此外,在控制器设计过程中,引入了一种含有积分项的坐标变换来处理系统的输入时滞问题。在输入时滞和外部干扰的影响下,所提出的基于干扰观测器的最优分布式协同神经网络控制策略能够保证每个无人机系统所有信号都有界,并且每个无人机系统的输出能够实现一致性。最后,仿真结果验证了所提控制方法的有效性。

全文