摘要

大坝变形是同一时刻内外多种荷载综合作用的结果,挖掘位移监测数据潜在规律和发展趋势是大坝变形预测诊断的关键技术,但常规GNSS+棱镜、自动化监测系统等进行观测存在较大非线性误差。为实现非线性、非平稳序列大坝变形数据的平稳化拟合处理,基于大坝变形位移关联性函数,构建了大坝变形预测BP神经网络模型。BP预测模型主要根据水压、温度和时效因子的特点,经实测数据的自适应学习训练获得能真实反映坝体变形规律及趋势的竖向位移预测数据,可为大坝变形安全预测与分析提供详实准确的数据支撑和技术保障。