摘要
精准的锂电池建模是保证电池储能系统可靠性至关重要的手段。荷电状态(state of charge,SOC)的准确估计保证了特定应用程序的安全高效运行。为了提高SOC的估计精度,首先建立等效电路模型,利用遗忘因子的偏差补偿最小二乘法(bias compensation recursive least squares,BCRLS)对电池模型进行参数辨识。然后,利用自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法来估计SOC。由于无迹无迹卡尔曼滤波算法易受非线性因素的干扰,因此提出了利用权重量定义AUKF算法提高SOC的估计精度。由于电池在放电过程中,电池内部特性会发生变化,而电池欧姆内阻会对SOC估计结果产生直接影响。基于此,本工作提出了双自适应无迹卡尔曼滤波来进一步提高SOC的估计精度。通过和不同算法进行比较,实验结果表明,所提算法估计SOC的误差控制在2%以内,验证了算法的有效性。
- 单位