摘要
为解决反向传播(back propagation, BP)神经网络在离港航班滑出时间预测精度欠佳的问题,构建了基于支持向量机(support vector machine, SVM)的离港航班滑出时间预测模型。首先,分析了影响离港航班滑出时间的可量化因素,构建了基于相关性分析的离港航班滑出时间预测模型;并对比分析了基于SVM和BP神经网络的滑出时间预测结果。结论表明:离港航班滑出时间与同时段推出航班数量、同时段起飞航班数量、同时段落地航班数量、1 h平均滑出时间呈现强相关性,与滑行距离、转弯个数、延误时间相关但不显著,与起飞时刻所在时段不相关。基于SVM和BP神经网络的预测结果趋势是一致的,考虑强相关和中度相关影响因素的七元组预测结果准确率达到最佳;引入不相关因素后模型的预测精度会下降。基于SVM的滑出时间预测模型精度显著高于BP神经网络预测模型,滑出时间误差范围在±5 min内的预测准确率可达98%。
-
单位中国民航飞行学院