摘要

在自然语言处理领域,全局注意力机制通过考虑编码器的所有隐藏状态来捕获信息,从而帮助预测结果。然而在理解汉语成语这种复杂的语言现象时,模型往往会因特定语境的干扰而产生错误的决定和认知。因此,为了使模型更好地感知成语在不同语境下的语法功能,该文提出了一种增强型的全局注意力机制,通过对每个位置空间产生额外的注意因子来调整原始的全局注意力,最终提高了模型对特定语义的学习能力。该文将增强型全局注意力机制与BERT语言模型相结合,设计了一个用于完形填空任务的模型,并在最近发布的中文成语完形填空数据集ChID上进行了实验。结果表明,相比于传统的BERT模型和全局注意模型,该模型取得的效果更优。