摘要
基于某省载货汽车历史行驶数据,提出了一种基于卷积神经网络-长短期记忆(CNN-LSTM)网络与自注意力机制的危险驾驶行为预测方法。针对载货汽车行驶数据量大、维度高、特征提取难度大、时序性强的特点,首先运用XGBoost对特征进行筛选,接着利用卷积神经网络(CNN)进行空间特征提取,再运用长短期记忆(LSTM)网络捕捉驾驶行为的时序信息,最后通过自注意力机制对危险驾驶行为进行预测。试验结果表明,该方法相对其他长时间序列预测方法在某省公路货运驾驶数据上表现优异,识别准确率达到85.05%,加权平均召回率达到83%,F1分数(F1-Score)达到84%。
- 单位