摘要

为了提高油田开采的安全性和科学性,油田中装有各型数据传感器,但数据缺失导致传感器采集数据可用性显著降低。针对油田传感器大比例数据缺失填充问题,提出了一种基于多元回归KNN的缺失数据填充方法。该方法首先基于KNN利用传感器数据空间相关性预测缺失值,其次基于多元回归利用传感器数据时间相关性预测缺失值,最后将时空相关性预测结果通过样本决定系数进行整合。分别采用标准数据集和油田传感器数据集进行性能对比实验,结果验证了该方法对缺失数据填充的有效性和准确性。