摘要

针对当前方法重构视觉图像时,存在峰值信噪比低、重构时间长和图像分辨率低的问题,提出基于稀疏度自适应的视觉图像三维清晰重构方法,利用图像光度信息和几何信息划分图像,按照纹理类别和边缘类别对图像进行分类,在图像组类别和噪声水平的基础上训练自适应字典,根据字典获得图像非局部相似先验和稀疏表示,结合建立变分模型对图像进行去噪处理。对去噪后的图像进行奇异值分解字典训练,利用稀疏度自适应正则化正交匹配算法对分解后的图像重建,完成视觉图像的三维清晰重构。仿真结果表明,所提方法的峰值信噪比高、重构时间短、图像分辨率高。