本文在Goog Le Net网络基础上搭建了一个适合手写汉字识别的卷积神经网络。研究建立了新的手写汉字训练集,新训练集综合了现有的训练集并剔除了其中的错误,同时加入印刷体训练集,增加书写风格的多样性。训练神经网络时采用随机梯度下降算法,并加入动量项加速网络参数的收敛,使用正则项防止过度拟合,最终训练出的神经网络在训练集上的正确率为99.56%,在验证集上的正确率达到96%,并具有很好的泛化能力。