摘要
针对方面级情感分析存在的局部信息捕捉不充分、多个意见词混淆的问题,提出了一种基于词共现的方面级情感分析模型。该模型将方面级情感分析看成句子对任务,利用BERT获得包含上下文与方面词交互注意力的节点信息;同时,对每条数据样本构建独立的词共现图,使用门控图神经网络更新节点,加强方面词附近信息的融合,减少无关意见词的干扰;之后在自注意力层进一步融合全局信息,最终取出方面词节点送入非线性层获得分类结果。与6个基线模型的对比实验结果表明,该模型有效地提升了方面级情感分析的准确性。
-
单位南京信息工程大学; 自动化学院