摘要
非负矩阵部分联合分解(Nonnegative matrix partial co-factorization,NMPCF)将指定源频谱作为边信息参与混合信号频谱的联合分解,以帮助确定指定源的基向量进而提高信号分离性能.卷积非负矩阵分解(Convolutive nonnegative matrix factorization,CNMF)采用卷积基分解的方法进行矩阵分解,在单声道语音分离方面取得较好的效果.为了实现强噪声条件下的语音分离,本文结合以上两种算法的优势,提出一种基于卷积非负矩阵部分联合分解(Convolutive nonnegative partial matrix co-factorization,CNMPCF)的单声道语音分离算法.本算法首先通过基音检测算法得到混合信号的语音起始点,再据此确定混合信号中的纯噪声段,最后将混合信号频谱和噪声频谱进行卷积非负矩阵部分联合分解,得到语音基矩阵,进而得到分离的语音频谱和时域信号.实验中,混合语音信噪比(Signal noise ratio,SNR)选择以-3dB为间隔从0dB至-12 dB共5种SNR.实验结果表明,在不同噪声类型和噪声强度条件下,本文提出的CNMPCF方法相比于以上两种方法均有不同程度的提高.
- 单位