摘要
K-means算法在聚类分析中有着广泛应用。它采用了均值中心这一启发式信息,具有计算效率高的优点,但对初始聚类中心选择敏感,且容易陷入局部最优。PSO算法的随机性和并行性特点使其在处理数据库形式的海量数据中表现出更大的优越性,不仅具有较强的全局搜索能力,同时,通过对PSO算法搜索过程的改进增强了算法在最优解附近的搜索概率,降低样本对初始化敏感的程度,可以弥补K-means算法的缺陷。将改进的PSO算法应用于K-means聚类算法可以提高算法的稳定性和收敛效率,通过四组标准UCI数据集的试验,验证了新算法的有效性。
-
单位西安航空学院; 西安电子工程研究所