摘要

针对工业过程故障检测问题,本文定义了独立元贡献度和贡献度矩阵,提出一种改进的子空间检测算法.首先,利用独立元分析(independent component analysis,ICA)算法提取过程变量的独立元信息,通过计算各个独立元在过程变量上的贡献度,构造贡献度矩阵;然后根据贡献度的大小,挑选出对应的变量组成反映不同"源"信息的子空间,并在这些子空间上建立故障检测模型;最后综合以上的多个检测模型,根据实际的需求或者故障的传播特征,确定集成策略,对工业过程进行故障检测.通过在TE(Tennessee Eastman)过程上对21种故障工况和1种正常工况的仿真研究,说明提出的改进算法是有效的.

  • 单位
    浙江大学; 工业控制技术国家重点实验室