摘要
针对行星齿轮箱特征提取困难的问题,提出一种基于参数优化变分模态分解与多域流形学习的故障诊断方法。首先,利用樽海鞘群优化变分模态分解(SSO-VMD)对信号进行分解与重构,降低噪声干扰;然后,从多域提取故障特征,并采用改进监督型自组织增量学习神经网络界标点等度规映射(ISSL-Isomap)算法进行降维处理,获取低维故障特征;最后,运用人工蜂群优化支持向量机(ABC-SVM)多故障分类器进行诊断识别。将SSO-VMD与经验模态分解进行对比,仿真信号分析结果验证SSO-VMD的优越性。将所提故障诊断方法应用于行星齿轮箱故障诊断实验分析中,结果表明:多域特征提取效果优于时域、频域和尺度域等单域特征提取效果;ISSL-Isomap降维效果优于等度规映射,t-分布邻域嵌入,线性判别分析,加权等度规映射和监督等度规映射等算法;所提方法故障识别率达到100%,能够有效识别出行星齿轮箱各工况类型。
- 单位