摘要
软件漏洞检测是维系软件安全性的关键,漏洞的高效检验是当前的研究热点。文中提出了一种基于DistilBert-LSTM与多项朴素贝叶斯的漏洞检测模型。为实现漏洞函数的源代码文本深度表征,文中通过DistilBert-LSTM挖掘漏洞的局部关键特征和全局时间特征,并得出漏洞的存在性概率;针对漏洞检测过程中的难样本,通过多项朴素贝叶斯进行优化检测,该模型使用TF-IDF矢量化器进行数据预处理,并通过执行卡方检验进行特征选择,将所得输出至多项朴素贝叶斯分类器中进行检测,以获得最终的漏洞检测结果。实验结果表明,文中提出的方法在公共漏洞和暴露数据库的数据上有效提高了漏洞检测的准确率和精确率,同时降低了漏洞检测的误报率和漏报率,相较于其他机器学习模型,具有更优的性能指标。
- 单位