摘要
针对飞机客舱热舒适度评价指标预测平均投票数(PMV)的各影响因素之间存在复杂的非线性和迭代求解关系问题,采用经布谷鸟搜索(CS)算法优化的BPNN来预测客舱PMV指标。通过对PMV模型参数分析,选出PMV主要影响因素作为预测模型的输入,利用CS算法的全局优化能力来解决BPNN易陷入局部最优及其收敛速度慢的问题,并对其初始阈值和权值进行优化。仿真结果表明,与GA-BPNN和PSO-BPNN相比,CS-BPNN预测模型具有较小的预测误差和良好的预测精度。所提方法在客舱PMV指标的预测中有较好的应用前景。
-
单位自动化学院; 中国民航大学