人体行为识别和分析是计算机视觉领域的研究热点,考虑到环境的复杂性和人体行为的多样性,行为识别在处理速度、识别准确率等方面还有很大的提升空间。近年来,深度学习技术的发展和在人工智能领域的成功应用,为人体行为识别提供了全新的解决方法。本文主要研究将深度学习中的卷积神经网络技术应用于人体行为识别,结合具体的教室应用场景,设计能够主动学习的智能化人体行为识别模型,对量化分析教室的学生的学习情况和教学情况具有重要的现实意义。