摘要
日益严格的柴油机排放法规使得其主要排放污染物氮氧化物(NOx)和颗粒物(PM)限值进一步降低.目前去除NOx的主要机外手段是选择性催化还原(SCR)技术,该技术通常在200℃以上才有良好的NOx转化率,而在柴油机冷起动阶段,SCR入口的排气温度无法达到200℃,NOx排放控制困难.尽管冷起动时间较短,但该阶段的NOx排放量占比很高.在严格的排放法规要求下,冷起动阶段的NOx排放控制日益受到关注.选择性催化还原捕集技术(SDPF)将SCR催化剂涂覆在壁流式颗粒捕集器(DPF)载体上,能够同时去除NOx和PM.与SCR技术相比,SDPF更加靠近柴油机排气门,NOx催化还原反应的温度得到有效提高.因此,SDPF成为了提高低温NOx转化率的关键技术.本文从SDPF结构与原理、载体与催化剂、性能及影响因素、SDPF技术路线等四个方面展开综述.SDPF结构与原理方面,介绍了SDPF的基本结构和化学反应原理,并指出了该技术面临的主要挑战;SDPF载体与催化剂方面,阐述了常见的载体材料、SCR催化剂涂覆、载体结构参数设计和提高载体性能的膜技术,以及钒基、沸石基SCR催化剂的研究进展;SDPF性能及影响因素方面,对SDPF的碳烟氧化性能、NOx还原性能、尿素混合性能和耐久性能进行了分析,需要重点优化碳烟氧化与NOx还原之间的竞争性反应;SDPF技术路线方面,介绍了带有SDPF的后处理系统优化,尿素双喷技术、低温NOx吸附、热管理等技术耦合SDPF能够进一步拓宽后处理系统的温度窗口,是满足未来超低排放法规的后处理技术发展趋势.
- 单位