摘要

由于传统分布式跟踪方法在先验噪声协方差与其实际值不相匹配时跟踪误差较大,提出了一种采用自适应一致性无迹卡尔曼滤波的分布式目标跟踪方法,该方法首先执行分布式UKF算法得到对当前移动目标状态的估计值,然后通过一个系统错误检测机制,确定是否需要对噪声协方差值进行更新。如需要,则根据当前获得的测量信息去估计当前噪声协方差,并联合该估计值和先前的噪声协方差值获得一个新的先验噪声协方差值。最后根据新获得的噪声协方差值对获得的目标状态估计值进行修正。实验结果表明该方法具有较好的准确性和鲁棒性:在噪声未知环境下,基于ACUKF的分布式跟踪方法相比于基于容积信息滤波和基于分布式无迹卡尔曼滤波的跟踪方法,最大跟踪误差值分别减少了49.93%和51.46%;在目标过程噪声发生动态变化的情况下,提出的方法相比于上述两种传统跟踪方法,跟踪误差值分别减少了40.67%和40.06%。