低线束激光雷达扫描的点云数据较为稀疏,导致无人驾驶环境感知系统中三维目标检测效果欠佳,通过多帧点云配准可实现稀疏点云稠密化,但动态环境中的行人与移动车辆会降低激光雷达的定位精度,也会造成融合帧中运动目标上的点云偏移较大。针对上述问题,提出了一种动态环境中多帧点云融合算法,利用该算法在园区道路实况下进行三维目标检测,提高了低线束激光雷达的三维目标检测精度。利用16线和40线激光雷达采集的行驶路况数据进行实验,结果表明该算法能够增强稀疏点云密度,改善低成本激光雷达的环境感知能力。