摘要

首先给出Banach空间中Euler-Lagrange型三次泛函方程的一种新表示方法f(x+y-2z)+f(y+z-2x)+f(z+x-2y)+6f(x+y+z)=9[f(x+y)+f(y+z)+f(z+x)]-18[f(x)+f(y)+f(z)];其次证明6个泛函方程的等价性问题;最后利用不动点的择一性研究了Euler-Lagrange型三次泛函方程的存在性和稳定性问题.