针对传统卷积神经网络的特征融合部分没有充分考虑各通道特征重要性以及特征利用率低等局限性问题,提出一种基于多层级配准场融合策略的双通道特征融合网络用于脑部图像配准。设计基于编码-解码的卷积网络对浮动图像和固定图像进行配准场估计;设计双通道特征融合模块对同级特征进行特征融合,基于分组卷积、全局平均池化等运算对输入特征进行通道赋权,利用空间变换网络对多级特征进行空间变换。在公开数据集的配准结果表明,提出的双通道特征融合网络能有效提高配准精度。