摘要
为解决电主轴转子不平衡故障的可视化智能识别问题,提出了一种对称极坐标图像和模糊C均值(FCM)聚类相结合的失衡故障诊断新方法。首先对转子时域振动信号进行经验模态分解降噪,按对称极坐标方法将其转化为二维雪花图像,通过灰度共生矩阵,提取雪花图像二维特征参数;然后对已知样本信号的特征参数组建故障特征向量,标准化后作为FCM输入,得到分类矩阵和聚类中心;最后计算待测样本和已知故障样本聚类中心贴进度,实现失衡故障识别和分类。在某电主轴系统平台上完成了1 800 r/min时转子3种不同失衡状态的诊断试验,在对45组小样本识别中该方法的分类准确率达到73%。
- 单位