摘要

人体姿态估计是计算机视觉领域的热门研究课题。随着深度学习的发展,人体姿态估计模型已经能够精准预测人体关键点。针对关键点被遮挡、关键点重合以及复杂背景等问题,提出了一种结合注意力机制的级联金字塔模型,它将注意力机制加入特征提取网络中,使模型可以获得更丰富的特征信息,并且借助GlobalNet和RefineNet达到精准定位被遮挡关键点的目的。在公开数据集MPII、MS COCO2017和3DOH50K上的验证结果表明,相较于以往模型,该模型在标准情况和被遮挡情况下人体姿态估计的准确度有所提升,且具有鲁棒性。

全文