摘要

【目的/意义】期刊评价的方法繁多且复杂,无法分辨其中的好坏,对于方法的效果也是难以锚定,使得期刊评价存在一定的模糊性和不确定性。【方法/过程】本文在主成分分析方法的基础上,提出了一种新的期刊评价方法——主成分-BP人工神经网络法,以《中国学术期刊影响因子年报(人文社会科学)》(2021年)的585种综合性人文社科期刊作为评价对象,将评价结果同权威期刊评价结果进行对比,再对评价方法进行分析。【结果/结论】研究结果表明:主成分-BP人工神经网络方法同部分传统方法相比结果更加精准;主成分-BP人工神经网络方法对评价对象要求较高;为其他领域期刊评价以及评价方法提供一定的借鉴思路。【创新/局限】本文仅以人文社科期刊为例,范围有一定的局限性,今后应进一步扩大研究主体范围并尝试将这种方法用于其它领域的评价。

全文