摘要

针对现代化养殖业无人化、智能化的需求,以目标检测网络YOLOv2为基础,提出了一种基于深度学习提取时空特征的生猪动作识别与定位的方法。对待检测视频关键帧中的生猪空间位置信息与视频流时序动作特征进行检测,采用通道注意力模块将这2种特征进行合理且平滑的特征融合,实现了一个端到端的动作识别网络,可以直接从视频序列中预测得到关键帧的包围框和动作分类概率。通过对某生猪养殖场群养栏监控视频进行训练和测试,研究了通道注意力模块和网络输入视频帧采样间隔对检测效果的影响,验证了三维卷积神经网络在生猪动作识别与定位中的有效性。