摘要
目的超声图像是临床医学中应用最广泛的医学图像之一,但左心室超声图像一般具有强噪声、弱边缘和组织结构复杂等问题,其图像分割难度较大。临床上需要一种效率高、质量好的超声图像左心室分割算法。本文提出一种基于深层聚合残差密集网络(deep layer aggregation for residual dense network,DLA-RDNet)的超声图像左心室分割算法。方法对获取的超声图像进行形态学操作,定位目标区域,得到目标图像。构建残差密集网络(residual dense network,RDNet)用于提取图像特征,并将RDNet得到的层次信息通过深层聚合(deep layer aggregation,DLA)的方式紧密融合到一起,得到分割网络DLA-RDNet,用于实现对超声图像左心室的精确分割。通过深监督(deep supervision,DS)方式为网络剪枝,简化网络结构,提升网络运行速度。结果数据测试集的实验结果表明,所提算法平均准确率为95.68%,平均交并比为97.13%,平均相似性系数为97.15%,平均垂直距离为0.31 mm,分割轮廓合格率为99.32%。与6种分割算法相比,所提算法的分割精度更高。在测试阶段,每幅图像仅需不到1 s的时间即可完成分割,远远超出了专业医生的分割速度。结论提出了一种深层聚合残差密集神经网络对超声图像左心室进行分割,通过主、客观对比实验表明本文算法的有效性,能够较对比方法更实时准确地对超声图像左心室进行分割,符合临床医学中超声图像左心室分割的需求。
- 单位