摘要
传统基于深度学习的语义分割方法使用的损失函数为交叉熵,而交叉熵并不能解决训练数据中的样本非均衡性问题。语义分割任务属于像素级分类,样本的非均衡性问题在其中体现得十分突出。文章提出了一种改进的Focal Loss作为损失函数来自动解决训练样本的非均衡性。该损失函数等同于在标准交叉熵上加上一个权重,该权重能够自动增加困难样本的交叉熵损失值,同时保持简单样本的交叉熵损失值。将Focal Loss作为DeepLabv3+的损失函数,并将DeepLabv3+的Backbone替换为ResNet-18,再使用Cityscapes数据集作为训练样本,分别使用交叉熵和Focal Loss作为损失函数来对模型进行训练。实验结果表明,改进的Focal Loss损失函数相比于交叉熵获得的语义分割精度更高,且能够有效缓解训练样本的非均衡性问题。
- 单位