摘要
高精度的水位预测能为防洪决策、水资源管理等提供重要的调度依据,减少洪旱灾害损失。为提高预报精度,提出一种基于小波分析的NARX神经网络模型(DWT-NARX),综合考虑洪泽湖入湖流量、出湖流量、周边用水、前期水位等因素,对洪泽湖日水位进行预报,并与BP神经网络、NARX神经网络模型进行比较。结果表明,三种模型在短历时预报中均取得了较好的模拟预测效果。当预见期为1或2天时,Nash-Sutcliffe效率系数均大于0.9,合格率大于85%;当预见期超过3d,NARX模型在水位变幅较大的时段预测结果变差,BP模型出现严重的震荡现象,NARX和DWT-NARX模型结果均优于BP神经网络,DWT-NARX在整体上结果最优。研究成果可为洪泽湖的水位预报提供一定的参考价值。
- 单位